Deep Decision® Advanced APIs Example Calls

Intro

The examples below show advanced use cases for LSM-LLM models. In these examples it is assumed you have stored your auth code in a environment variable.

Below is a Python example of how to create a environment varible to store you auth code.

First install dotenv

pip install python-dotenv

Next create a file called login.py with the following code. This code should be run as a script otherwise the prompts will not work.

#!/usr/bin/env python
         
import requests 
import getpass
import os 
        
username=str(input("Type Your Username:\n")) 
password=getpass.getpass()
        
payload = {"username": username  , "password":password}  
response = requests.post(url= "https://deeplabs.dev/token", data=payload) 
assert response.status_code == 200
token = response.json()["access_token"]  

import dotenv   
dotenv_file = dotenv.find_dotenv('dd_api.env') 
if dotenv_file == "":
    open("dd_api.env", "w")
    dotenv_file = dotenv.find_dotenv('dd_api.env') 
 
dotenv.load_dotenv(dotenv_file)
dotenv.set_key(dotenv_file, "DEEP_DECISION_TOKEN", token)
   
 

Finally run the following command and enter your user name and password.

python login.py
 

Synthetic Data

One of the most powerful tools of LSMs is to generate Synthetic data (Reverse transform). The following example shows how to generate feature data from an existsing LSM model. To run this example you need the task_id of an existsing LSM model.

Python

import os
import requests
import dotenv 
import time

dotenv.load_dotenv("dd_api.env")
token = os.environ['DEEP_DECISION_TOKEN']
  
lsm_task_id =   task id from an existing LSM

payload = {"OutputName": "reverse_transform_1000",
           "LSMTaskId" : lsm_task_id, 
           "Records":1000 } 

response = requests.post(url="https://deeplabs.dev/deep_decision/reverse_transform",
                          params=payload,
                          headers={"Content-Type": "application/json; charset=utf-8", 
                                    "Authorization": f"Bearer {token}"})
                          
assert response.status_code == 200 
task_id =response.json()["TaskId"] 
  
running = True
while running:
    response_status = requests.get(url="https://deeplabs.dev/deep_decision/reverse_transform/" + task_id, 
                         headers={"Authorization": f"Bearer {token}"})
                          
    if response_status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
       running = False
    
    time.sleep(5) 
  
data = requests.get(url="https://deeplabs.dev/deep_decision/reverse_transform/download/" + task_id, 
                         headers={"Authorization": f"Bearer {token}"})
print(data.text)

  

cURL


    Todo

  

Expected Output

  0.46380755,0.05105678,0.24551268,0.03683918,0.2507396,0.99654776,1.0046242,-0.0047902344,-0.0046186065,-0.0046186065
  0.43295756,0.16100644,0.3331982,-0.013320735,0.28278425,1.013017,0.9957659,0.004235721,0.004238049,0.004238049
  0.46427616,0.0393171,0.2386723,0.006180934,0.23810743,1.0001982,0.98970985,0.010247549,0.010291172,0.010291172
  0.44723058,0.12667318,0.3278843,0.03441456,0.13836586,0.9913957,1.0191704,-0.012941012,-0.019163158,-0.019163158
  0.30264154,0.986271,0.35439748,0.017408665,0.724232,0.0054707513,1.0125,0.011873793,0.0049595726,0.0049595726 
  ...
  0.44302073,0.11943609,0.21936777,0.01674453,0.23416166,1.0142374,0.9854311,0.014540881,0.014569386,0.014569386

Multi-Models

LSM enable creating semi-supervised models on the fly to address threats as they merge in near real-time. The following example shows how to create and use multi-models using an existsing LSM model. To run this example you need the task_id of an existsing LSM model.

Python


import os
import requests
import dotenv 
import time

dotenv.load_dotenv("dd_api.env")
token = os.environ['DEEP_DECISION_TOKEN']
                                                                                                                                                                                                                                                                                                                                                                                                       questing user authentication
lsm_task_id =  The task id from an existing LSM.

payload = {"LSMTaskId": lsm_task_id,
"Target" : "settlement_code_desc", 
"TargetOperator" : "=", 
"TargetValue" : "Returned", 
} 

response = requests.post(url="https://deeplabs.dev/deep_decision/multi_model/fit",
           params=payload,
           headers={"Content-Type": "application/json; charset=utf-8", 
                     "Authorization": f"Bearer {token}"})
           
assert response.status_code == 200 
mm_task_id =response.json()["TaskId"] 
 

running = True
while running:
    status = requests.get(url="https://deeplabs.dev/deep_decision/multi_model/fit/"+ mm_task_id, 
          headers={"Authorization": f"Bearer {token}"})
           
    if status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
        running = False

    time.sleep(2) 
  
payload = {"LSMTaskId": lsm_task_id, 
"MultiModelTaskId": mm_task_id  } 

response_2 = requests.post(url="https://deeplabs.dev/deep_decision/multi_model/inference",
           params=payload,
           headers={"Content-Type": "application/json; charset=utf-8", 
                     "Authorization": f"Bearer {token}"})
           
assert response_2.status_code == 200

mm_in_task_id =response_2.json()["TaskId"] 
 

running = True
while running:
    status = requests.get(url="https://deeplabs.dev/deep_decision/multi_model/inference/"+ mm_in_task_id, 
          headers={"Authorization": f"Bearer {token}"})
           
    if status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
        running = False 
        time.sleep(2)  

data = requests.get(url="https://deeplabs.dev/deep_decision/multi_model/inference/download/"+ mm_in_task_id, 
          headers={"Authorization": f"Bearer {token}"})
          
print(data.text ) 
   
  

cURL


    Todo

  

Expected Output

  0.5813363194465637
  0.012083625886589289
  0.39033398032188416
  0.41366443037986755
  0.5977702140808105
  ... 
  0.020116182044148445

Proximity

You can explore how records within your data are related using the promimity search method. For each record its closest five neighbor is returned. The following example shows how to calculate proximity features using an existsing LSM model. To run this example you need the task_id of an existsing LSM model.

Python


import os
import dotenv 
dotenv.load_dotenv("dd_api.env")
token = os.environ['DEEP_DECISION_TOKEN']

lsm_task_id = the task id from an existing LSM.

payload = {"LSMTaskId": lsm_task_id 
          } 

response = requests.post(url="https://deeplabs.dev/deep_decision/topology/fit/",
                          params=payload,
                          headers={"Content-Type": "application/json; charset=utf-8", 
                                    "Authorization": f"Bearer {token}"})
                         
assert response.status_code == 200
 
mm_task_id =response.json()["TaskId"] 
  
running = True
while running:
    status = requests.get(url="https://deeplabs.dev/deep_decision/topology/fit/"+ mm_task_id, 
                         headers={"Authorization": f"Bearer {token}"})
                          
    if status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
       running = False
    
    time.sleep(5) 
  
payload = {"LSMTaskId": prior_task_id, 
               "TopologyModelTaskId": mm_task_id  } 

response_2 = requests.post(url="https://deeplabs.dev/deep_decision/topology/similar",
                          params=payload,
                          headers={"Content-Type": "application/json; charset=utf-8", 
                                    "Authorization": f"Bearer {token}"})
                          
assert response_2.status_code == 200
 
mm_in_task_id = response_2.json()["TaskId"] 
 
running = True
while running:
    status = requests.get(url="https://deeplabs.dev/deep_decision/topology/similar/"+ mm_in_task_id, 
                         headers={"Authorization": f"Bearer {token}"})
                          
    if status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
       running = False
    
    time.sleep(2)  
  
data = requests.get(url="https://deeplabs.dev/deep_decision/topology/similar/download/"+ mm_in_task_id, 
                         headers={"Authorization": f"Bearer {token}"})
                         
print(data.text )
      
 

cURL


  Todo


Expected Output

  34,118,87,79,166
  35,37,165,9,215
  36,102,172,164,137
  37,9,165,35,200
  38,95,122,45,125
  ...
  44,85,106,109,11

Drift

LSMs can data overtime to see drifts in bevhavior. The following example shows how to monitor behavior drift using an existsing LSM model. To run this example you need the task_id of an existsing LSM model. To run download and unzip in your work directory the following data taken from Kaggle:

OnlineFraud.zip

Python


import os
import dotenv 
dotenv.load_dotenv("dd_api.env")
token = os.environ['DEEP_DECISION_TOKEN']
                   
input_file  = "summary_0.csv"

f = open("./onlinefraud/" +input_file, 'rb')
files = {"file": (f.name, f, "multipart/form-data")}
response = requests.post(url="https://deeplabs.dev/deep_decision/upload_data",
                files=files ,
                headers={"Authorization": f"Bearer {token}"})

assert response.status_code == 200 

file_name = response.json()["FileName"]
     
payload = {"FileName": file_name,
               "Focus" : "amount_max",
               "FocusValue" : 44373.0,
               "FocusOperator" : ">="
              } 
    
response_2 = requests.post(url="https://deeplabs.dev/deep_decision/fit",
                              params=payload,
                              headers={"Content-Type": "application/json; charset=utf-8", 
                                        "Authorization": f"Bearer {token}"})
                             

assert response_2.status_code == 200 
     
task_id = response_2.json()["TaskId"]
     
running = True
while running:
    response_3 = requests.get(url="https://deeplabs.dev/deep_decision/fit/" + task_id, 
                             headers={"Authorization": f"Bearer {token}"})
                             
 
    if response_3.json()["Status"] in  ["FAILURE", "SUCCESS"]:
           running = False
    time.sleep(2) 
 
input_file  = "summary_1.csv"

f = open("./onlinefraud/" + input_file, 'rb')
files = {"file": (f.name, f, "multipart/form-data")}
response_4 = requests.post(url="https://deeplabs.dev/deep_decision/upload_data",
                files=files ,
                headers={"Authorization": f"Bearer {token}"})
    
assert response_4.status_code == 200 
     
payload = {"FileName": input_file, 
               "PriorModelTaskId" : task_id
              } 
     
    
response_5 = requests.post(url="https://deeplabs.dev/deep_decision/inference",
                              params=payload,
                              headers={"Content-Type": "application/json; charset=utf-8", 
                                        "Authorization": f"Bearer {token}"}) 
         
assert response_5.status_code == 200 
LSMInferenceTaskId = response_5.json()["TaskId"]
     
running = True
while running:
   status = requests.get(url="https://deeplabs.dev/deep_decision/inference/" + LSMInferenceTaskId, 
                             headers={"Authorization": f"Bearer {token}"})
                             
   if status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
       running = False
   time.sleep(5) 

payload = {"LSMTaskId":  task_id,
               "LSMInferenceTaskId": LSMInferenceTaskId, 
          } 

response_6 = requests.post(url="https://deeplabs.dev/deep_decision/topology/cfit",
                          params=payload,
                          headers={"Content-Type": "application/json; charset=utf-8", 
                                    "Authorization": f"Bearer {token}"})
                         
   
assert response_6.status_code == 200
 
mm_task_id = response_6.json()["TaskId"] 

running = True

while running:
   status = requests.get(url="https://deeplabs.dev/deep_decision/topology/cfit/"+ mm_task_id, 
                         headers={"Authorization": f"Bearer {token}"})
                          
   if status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
        running = False
    
   time.sleep(5)  
 

payload = {"LSMInferenceTaskId": LSMInferenceTaskId, 
               "TopologyModelTaskId": mm_task_id  } 

response_7 = requests.post(url="https://deeplabs.dev/deep_decision/topology/drift",
                          params=payload,
                          headers={"Content-Type": "application/json; charset=utf-8", 
                                    "Authorization": f"Bearer {token}"})
                         
 
assert response_7.status_code == 200

mm_in_task_id = response_7.json()["TaskId"] 

running = True

while running:
    status = requests.get(url="https://deeplabs.dev/deep_decision/topology/drift/"+ mm_in_task_id, 
                         headers={"Authorization": f"Bearer {token}"})
                          
    if status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
       running = False
    
    time.sleep(2)  
  
data = requests.get(url="https://deeplabs.dev/deep_decision/topology/drift/download/"+ mm_in_task_id, 
                         headers={"Authorization": f"Bearer {token}"})
                         
print(data.text ) 
 

cURL


  Todo


Expected Output

 
  1.4971574203081233
  3.422140212921138
  1.4015057627344816
  3.649078550973383
  1.7401598452516722  
  ...
  2.2046907395506743

Twinning

LSM can find twins within new datasets for targeting and analysis. The following example shows how to find twins in a new dataset using an existsing LSM model. To run this example you need the task_id of an existsing LSM model. To run download and unzip in your work directory the following data taken from Kaggle:

Bank.zip

Python


import os
import dotenv 
dotenv.load_dotenv("dd_api.env")
token = os.environ['DEEP_DECISION_TOKEN']

f = open("./bank/bank.1.csv", 'rb') 
files = {"file": (f.name, f, "multipart/form-data")}
response = requests.post(url="https://deeplabs.dev/deep_decision/upload_data",
                files=files ,
                headers={"Authorization": f"Bearer {token}"})
    
    
assert response.status_code == 200 
file_name = response.json()["FileName"]
     
payload = {"FileName": file_name,
               "Focus" : "poutcome",
               "FocusValue" : "unknown",
               "FocusOperator" : "="
              } 
    
response_2 = requests.post(url="https://deeplabs.dev/deep_decision/fit",
                              params=payload,
                              headers={"Content-Type": "application/json; charset=utf-8", 
                                        "Authorization": f"Bearer {token}"})
                             
assert response_2.status_code == 200 

task_id = response_2.json()["TaskId"]
    

running = True
while running:
        status = requests.get(url="https://deeplabs.dev/deep_decision/fit/" + task_id, 
                             headers={"Authorization": f"Bearer {token}"})
                              
        if status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
           running = False
        time.sleep(5) 

    
f = open("./bank/bank.2.csv", 'rb')
files = {"file": (f.name, f, "multipart/form-data")}
response_3 = requests.post(url="https://deeplabs.dev/deep_decision/upload_data",
                files=files ,
                headers={"Authorization": f"Bearer {token}"})
    
assert response_3.status_code == 200 
     
payload = {"FileName": "bank.2.csv", 
               "PriorModelTaskId" : task_id
              } 
      
response_4 = requests.post(url="https://deeplabs.dev/deep_decision/inference",
                              params=payload,
                              headers={"Content-Type": "application/json; charset=utf-8", 
                                        "Authorization": f"Bearer {token}"})
     
assert response_4.status_code == 200
      
LSMInferenceTaskId = response_4.json()["TaskId"]
    
running = True
while running:
        status = requests.get(url="https://deeplabs.dev/deep_decision/inference/" + LSMInferenceTaskId, 
                             headers={"Authorization": f"Bearer {token}"})
                              
        if status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
           running = False
        time.sleep(5) 
     

payload = {"LSMTaskId": task_id,
               "LSMInferenceTaskId": LSMInferenceTaskId, 
          } 

request_5 = requests.post(url="https://deeplabs.dev/deep_decision/topology/cfit",
                          params=payload,
                          headers={"Content-Type": "application/json; charset=utf-8", 
                                    "Authorization": f"Bearer {token}"})
                         
assert request_5.status_code == 200
 
mm_task_id = request_5.json()["TaskId"] 

    
running = True
while running:
   status = requests.get(url="https://deeplabs.dev/deep_decision/topology/cfit/"+ mm_task_id, 
                             headers={"Authorization": f"Bearer {token}"})
                              
    if status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
        running = False
        
    time.sleep(5) 

 

payload = {"LSMInferenceTaskId": LSMInferenceTaskId, 
               "TopologyModelTaskId": mm_task_id  } 

response_6 = requests.post(url="https://deeplabs.dev/deep_decision/topology/twins",
                          params=payload,
                          headers={"Content-Type": "application/json; charset=utf-8", 
                                    "Authorization": f"Bearer {token}"})
                   
assert response_6.status_code == 200
 
mm_in_task_id = response_6.json()["TaskId"] 

running = True
while running:
    status = requests.get(url="https://deeplabs.dev/deep_decision/topology/twins/"+ mm_in_task_id, 
                         headers={"Authorization": f"Bearer {token}"})
                          
    if status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
       running = False
    
    time.sleep(5) 
  
data = requests.get(url="https://deeplabs.dev/deep_decision/topology/twins/download/"+ mm_in_task_id, 
                         headers={"Authorization": f"Bearer {token}"})
                         
print(data.text )

cURL


  Todo


Expected Output

"[68, 0.033436298591846124]","[62, 0.04832043449395457]"
"[63, 0.4380094980488955]","[68, 0.4605327707084767]"
"[59, 0.13782657931159953]","[68, 0.15387070262619562]"
"[59, 0.17298820215651198]","[68, 0.19223247651858108]"
"[59, 0.09788875656452228]","[58, 0.13564280369497914]" 
...
"[59, 0.17972316648126735]","[68, 0.2015414928549079]"

World State

You can leverage pre-trained LSM without building a new LSM model. This example runs our World State model for a give date range.

Python


import os
import dotenv 
dotenv.load_dotenv("dd_api.env")
token = os.environ['DEEP_DECISION_TOKEN']
 
payload = {"ProjectName": "test",
            "Region" : "US", 
            "Date" : "01/01/2022", 
            "Periods" : 50, 
          } 

response = requests.post(url="https://deeplabs.dev/deep_decision/world_state/embeddings",
                          params=payload,
                          headers={"Content-Type": "application/json; charset=utf-8", 
                                    "Authorization": f"Bearer {token}"})
                          
assert response.status_code == 200
 
task_id =response.json()["TaskId"]
 

running = True
while running:
    status = requests.get(url="https://deeplabs.dev/deep_decision/world_state/embeddings/" + task_id, 
                         headers={"Authorization": f"Bearer {token}"})
                          
    if status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
       running = False
    
    time.sleep(5) 
 
data = requests.get(url="https://deeplabs.dev/deep_decision/world_state/embeddings/download/"+  task_id, 
                         headers={"Authorization": f"Bearer {token}"})
                         
print(data.text ) 
 

cURL


  Todo


Expected Output

[{"region":"US","date":1645232461000,"s&p_500_dl_prices":-0.0427175929,"s&p_500_anomaly_dl_prices":205,"russell_1000_dl_prices":-0.0329695153,"russell_1000_anomaly_dl_prices":244,"nikkei_225_dl_prices":0.0057064018,"nikkei_225_anomaly_dl_prices":731,"natural_gas_dl_prices":-0.0028949996,"natural_gas_anomaly_dl_prices":387,"nasdaq_dl_prices":-0.0345521869,"nasdaq_anomaly_dl_prices":180,"nasdaq_100_dl_prices":-0.0083518486,"nasdaq_100_anomaly_dl_prices":200,"gold_dl_prices":-0.0115861884,"gold_anomaly_dl_prices":334,"ftse_100_dl_prices":-0.0014682044,"ftse_100_anomaly_dl_prices":354,"dax_dl_prices":-0.0727371928,"dax_anomaly_dl_prices":190,"cboe_volatility_index_dl_prices":0.0546578822,"cboe_volatility_index_anomaly_dl_prices":284,"bitcoin_dl_prices":-0.0234457974,"bitcoin_anomaly_dl_prices":246,"TMIN_dl_weather":0.1781523594,"TMIN_anomaly_dl_weather":330,"TMAX_dl_weather":0.3097317937,"TMAX_anomaly_dl_weather":236,"TAVG_dl_weather":0.2377009852,"TAVG_anomaly_dl_weather":194,"SNWD_dl_weather":0.966868867,"SNWD_anomaly_dl_weather":149,"SNOW_dl_weather":0.9587584984,"SNOW_anomaly_dl_weather":157,"PRCP_dl_weather":0.3977812611,"PRCP_anomaly_dl_weather":157,"RHAV_dl_weather":0.8684229476,"RHAV_anomaly_dl_weather":470,"RHMX_dl_weather":0.87289397,"RHMX_anomaly_dl_weather":415,"01_cnt_neg_tone_dl_news":0.0025696601,"01_cnt_neg_tone_anomaly_dl_news":702,"02_cnt_neg_tone_dl_news":0.0019427925,"02_cnt_neg_tone_anomaly_dl_news":759,"03_cnt_neg_tone_dl_news":0.0023542987,"03_cnt_neg_tone_anomaly_dl_news":566,"03_cnt_pos_tone_dl_news":-0.0019865568,"03_cnt_pos_tone_anomaly_dl_news":519,"05_cnt_pos_tone_dl_news":-0.0001768632,"05_cnt_pos_tone_anomaly_dl_news":455,"06_cnt_neg_tone_dl_news":-0.0018127371,"06_cnt_neg_tone_anomaly_dl_news":651,"06_cnt_pos_tone_dl_news":0.0014753919,"06_cnt_pos_tone_anomaly_dl_news":602,"07_cnt_neg_tone_dl_news":-0.0013654009,"07_cnt_neg_tone_anomaly_dl_news":516,"07_cnt_pos_tone_dl_news":-0.0005561117,"07_cnt_pos_tone_anomaly_dl_news":464,"08_cnt_neg_tone_dl_news":0.0028051624,"08_cnt_neg_tone_anomaly_dl_news":313,"10_cnt_neg_tone_dl_news":0.0037537538,"10_cnt_neg_tone_anomaly_dl_news":705,"11_cnt_neg_tone_dl_news":0.0042574357,"11_cnt_neg_tone_anomaly_dl_news":669,"12_cnt_neg_tone_dl_news":-0.0054685369,"12_cnt_neg_tone_anomaly_dl_news":646,"13_cnt_neg_tone_dl_news":-0.0060976361,"13_cnt_neg_tone_anomaly_dl_news":661,"14_cnt_neg_tone_dl_news":0.0,"14_cnt_neg_tone_anomaly_dl_news":759,"15_cnt_neg_tone_dl_news":0.0,"15_cnt_neg_tone_anomaly_dl_news":587,"16_cnt_neg_tone_dl_news":-0.0005192108,"16_cnt_neg_tone_anomaly_dl_news":687,"18_cnt_neg_tone_dl_news":0.011344678,"18_cnt_neg_tone_anomaly_dl_news":582,"score3_dl_software_exploits":0.4908546815,"score3_anomaly_dl_software_exploits":110,"cnt3_dl_software_exploits":0.8705513005,"cnt3_anomaly_dl_software_exploits":403,"severity3_dl_software_exploits":0.526237196,"severity3_anomaly_dl_software_exploits":179,"impact3_dl_software_exploits":0.7070185172,"impact3_anomaly_dl_software_exploits":351,"min_severity3_dl_software_exploits":0.6293070235,"min_severity3_anomaly_dl_software_exploits":411,"max_severity3_dl_software_exploits":0.9788910928,"max_severity3_anomaly_dl_software_exploits":825,"max_impact3_dl_software_exploits":0.8412687158,"max_impact3_anomaly_dl_software_exploits":757,"min_impact3_dl_software_exploits":0.1855470431,"min_impact3_anomaly_dl_software_exploits":60}
  ...
]

Psychographics

You can leverage pre-trained LSM without building a new LSM model. This example runs our LSM Psychographics model using just shopping history.

Python


import os
import dotenv 
dotenv.load_dotenv("dd_api.env")
token = os.environ['DEEP_DECISION_TOKEN']               
 
payload = {"ProjectName": "Pyco_Test",
               "History" : json.dumps(["Target", "Safeway", "Amazon", "TacoBell", "InAndOut"]),  
          } 

response = requests.post(url="https://deeplabs.dev/deep_decision/pre-trained/psychographics",
                          params=payload,
                          headers={"Content-Type": "application/json; charset=utf-8", 
                                    "Authorization": f"Bearer {token}"})
                         
  
assert response.status_code == 200
 
mm_task_id = response.json()["TaskId"] 

running = True
while running:
    status = requests.get(url="https://deeplabs.dev/deep_decision/pre-trained/psychographics/" + mm_task_id, 
                         headers={"Authorization": f"Bearer {token}"})
                          
    if status.json()["Status"] in  ["FAILURE", "SUCCESS"]:
       running = False
    
    time.sleep(5) 
  
data = requests.get(url="https://deeplabs.dev/deep_decision/pre-trained/psychographics/download/"+ mm_task_id, 
                         headers={"Authorization": f"Bearer {token}"})
                         
print(data.text ) 
 

cURL


  Todo


Expected Output

[{"neuroticism":0.012,"agreeableness":0.008955224,"conscientiousness":0.009615385,"openness":0.011764706,"mindful":0.012145749,"extroversion":0.013157895,"impulse":0.020547945,"RF_actionChain_fraud_recieved_fraudaert_text_max":0.1339210908,"RF_bnpl_urge_max":0.3895239346,"RF_actionChain_fraud_easy_max":0.1278611028,"RF_Ukraine_read_news_mobile_device_max":0.3143611367,"RF_promotions_just_wanted_to_try_something_new_max":0.3020388319,"RF_actionChain_fraud_appreciate_max":0.1335004163,"RF_actionChain_fraud_ethical_max":0.2463841159,"RF_actionChain_fraud_present_max":0.1199792379,"RF_crypto_My_friends_would_say_that_I_m_a_risk_taker_GRIP_max":0.0,"RF_promotions_I_went_back_at_least_one_more_time_merchant_outcomes_max":0.3071109915,"RF_actionChain_fraud_unnecessary_max":0.1266302142,"RF_impulsivity_1_urgeDiff_max":1.0,"RF_actionChain_fraud_declineYesNo_max":0.6108015818,"RF_crypto_I_enjoy_taking_risks_in_most_aspects_of_my_life_GRIP_max":0.0,"RF_actionChain_fraud_inflation_worried_max":0.1275277696,"RF_marketing_channel_outdoor_preferred_max":0.3217299143,"RF_marketing_channel_buyCosofPersonalizedAds_max":0.00435739,"RF_promotions_I_never_went_back_merchant_outcomes_max":0.0986544962,"RF_crypto_Taking_risks_makes_life_more_fun_GRIP_max":0.0,"RF_Ukraine_read_news_facebook_max":0.1558929916,"RF_impulsivity_2_urge_max":0.4843093524,"RF_actionChain_fraud_received_alert_max":0.255594067,"RF_marketing_channel_usePersonalData_max":0.0019838536,"RF_actionChain_fraud_debit_credit_card_fraud_worried_max":0.3673081252,"RF_buyers_remorse_buyersRemorse":0.8687597902,"RF_promotions_returned_product_max":0.100922111,"RF_marketing_channel_video_preferred_max":0.0036505848,"RF_Ukraine_How_do_you_primarily_read_the_news_":0.0,"RF_marketing_channel_radio_preferred_max":0.0097651515,"RF_crypto_I_am_attracted__rather_than_scared__by_risk_GRIP_max":0.2538959867,"RF_marketing_channel_socialMedia_preferred_max":0.0005412924,"RF_crypto_I_would_take_a_risk_even_if_it_meant_I_might_get_hurt_GRIP_max":0.1317617549,"RF_actionChain_fraud_consumer_paid_chargeback_max":0.0017142857,"RF_healthcare_advertisement_deceptive_max":0.7636308081,"RF_promotions_buy_now_pay_later_service_merchant_change_reasons_max":0.0,"RF_actionChain_fraud_real_fraud_max":0.6145682984,"RF_Ukraine_Which_social_media_platform_do_you_read_the_news_on_":0.3063133145,"RF_crypto_I_commonly_make_risky_decisions_GRIP_max":0.255629021,"RF_actionChain_fraud_check_fraud_daliy_max":0.756380673,"RF_marketing_channel_preferTailoredAds_max":0.2974078644,"RF_actionChain_fraud_stayLonger_max":0.2522357115,"RF_crypto_Taking_risks_is_an_important_part_of_my_life_GRIP_max":0.2626744256,"RF_promotions_told_firms_max":0.2999351153,"RF_marketing_channel_email_preferred_max":0.0005157729,"RF_promotions_ever_switched_product_max":0.7128036375,"RF_marketing_channel_commercials_preferred_max":0.0031824894,"RF_actionChain_fraud_trust_max":0.2524955541,"RF_actionChain_fraud_frustrate_max":0.3839993756,"RF_actionChain_fraud_identity_theft_worried_max":0.1292412587,"RF_bnpl_intent_max":0.1361630169,"RF_marketing_channel_snailMail_preferred_max":0.3124951956,"RF_promotions_rebate_program_merchant_change_reasons_max":0.0993936511,"RF_promotions_one_time_discount_coupon_merchant_change_max":0.3073334434,"RF_marketing_channel_printed_preferred_max":0.3420828955,"RF_crypto_I_am_a_believer_of_taking_chances_GRIP_max":0.0004,"RF_promotions_loyalty_program_merchant_change_reason_max":0.5141764263,"RF_marketing_channel_mobile_preferred_max":0.0007104238,"RF_actionChain_fraud_textPreferred_max":0.2553853759,"RF_actionChain_fraud_intrusive_max":0.108424938,"RF_Ukraine_shopped_online_less_max":0.5450570509,"RF_actionChain_fraud_fraudAlert_nextSteps_another_card_max":0.0,"neuroticism_bin":2,"agreeableness_bin":2,"conscientiousness_bin":1,"openness_bin":1,"mindful_bin":3,"extroversion_bin":2,"impulse_bin":3}
...
]
Copyright © 2024 Deep Labs